Grafts of Olfactory Stem Cells Restore Breathing and Motor Functions after Rat Spinal Cord Injury

J Neurotrauma. 2018 Aug 1;35(15):1765-1780. doi: 10.1089/neu.2017.5383. Epub 2018 Apr 30.

Abstract

The transplantation of olfactory ecto-mesenchymal stem cells (OEMSCs) could be a helpful therapeutic strategy for spinal cord repair. Using an acute rat model of high cervical contusion that provokes a persistent hemidiaphragmatic and foreleg paralysis, we evaluated the therapeutic effect of a delayed syngeneic transplantation (two days post-contusion) of OEMSCs within the injured spinal cord. Respiratory function was assessed using diaphragmatic electromyography and neuroelectrophysiological recordings of phrenic nerves (innervating the diaphragm). Locomotor function was evaluated using the ladder-walking locomotor test. Cellular reorganization in the injured area was also studied using immunohistochemical and microscopic techniques. We report a substantial improvement in breathing movements, in activities of the ipsilateral phrenic nerve and ipsilateral diaphragm, and also in locomotor abilities four months post-transplantation with nasal OEMSCs. Moreover, in the grafted spinal cord, axonal disorganization and inflammation were reduced. Some grafted stem cells adopted a neuronal phenotype, and axonal sparing was observed in the injury site. The therapeutic effect on the supraspinal command is presumably because of both neuronal replacements and beneficial paracrine effects on the injury area. Our study provides evidence that nasal OEMSCs could be a first step in clinical application, particularly in patients with reduced breathing/locomotor movements.

Keywords: breathing recovery; locomotion recovery; nasal olfactory stem cells; spinal cord injury; stem cell therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diaphragm / innervation
  • Mesenchymal Stem Cell Transplantation / methods*
  • Nasal Mucosa / cytology
  • Rats
  • Rats, Inbred F344
  • Recovery of Function / physiology*
  • Respiration*
  • Spinal Cord Injuries / physiopathology*
  • Spinal Cord Regeneration / physiology*