A sleep spindle detection algorithm that emulates human expert spindle scoring

J Neurosci Methods. 2019 Mar 15:316:3-11. doi: 10.1016/j.jneumeth.2018.08.014. Epub 2018 Aug 11.

Abstract

Background: Sleep spindles are a marker of stage 2 NREM sleep that are linked to learning & memory and are altered by many neurological diseases. Although visual inspection of the EEG is considered the gold standard for spindle detection, it is time-consuming, costly and can introduce inter/ra-scorer bias.

New method: Our goal was to develop a simple and efficient sleep-spindle detector (algorithm #7, or 'A7') that emulates human scoring. 'A7' runs on a single EEG channel and relies on four parameters: the absolute sigma power, relative sigma power, and correlation/covariance of the sigma band-passed signal to the original EEG signal. To test the performance of the detector, we compared it against a gold standard spindle dataset derived from the consensus of a group of human experts.

Results: The by-event performance of the 'A7' spindle detector was 74% precision, 68% recall (sensitivity), and an F1-score of 0.70. This performance was equivalent to an individual human expert (average F1-score = 0.67).

Comparison with existing method(s): The F1-score of 'A7' was 0.17 points higher than other spindle detectors tested. Existing detectors have a tendency to find large numbers of false positives compared to human scorers. On a by-subject basis, the spindle density estimates produced by A7 were well correlated with human experts (r2 = 0.82) compared to the existing detectors (average r2 = 0.27).

Conclusions: The 'A7' detector is a sensitive and precise tool designed to emulate human spindle scoring by minimizing the number of 'hidden spindles' detected. We provide an open-source implementation of this detector for further use and testing.

Keywords: Detector; Electroencephalography (EEG); Polysomnography (PSG); Sigma; Sleep; Sleep spindle.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Algorithms*
  • Brain Waves / physiology*
  • Electroencephalography / methods*
  • Electroencephalography / standards*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Sensitivity and Specificity
  • Sleep Stages / physiology*