Prostaglandin E2 triggers cytochrome P450 17α hydroxylase overexpression via signal transducer and activator of transcription 3 phosphorylation and promotes invasion in endometrial cancer

Oncol Lett. 2018 Oct;16(4):4577-4585. doi: 10.3892/ol.2018.9165. Epub 2018 Jul 18.

Abstract

Prostaglandin E2 (PGE2) is the most common prostaglandin in the human body, meaning that its malfunction impacts on the development of numerous diseases. Prostaglandin E synthase 2 (PTGES2) is involved in the synthesis of PGE2. In the present study, immunohistochemistry of PTGES2 was performed in 152 patients with endometrial cancer and in 66 patients with normal endometria. The results indicate a notable association among increased expression of PTGES2 and age (P=0.0092) and the depth of myometrial invasion (P<0.0001). Reverse transcription-quantitative polymerase chain reaction and western blot analysis demonstrated that cytochrome P450 17α hydroxylase (CYP17), an enzyme for androgen synthesis, is overexpressed following PGE2 stimulation via signal transducer and activator of transcription 3 (STAT3) phosphorylation. ELISA also detected increased androgen (testosterone) secretion. Further invasion of endometrial cancer cells was induced at high androgen levels and when CYP17 was overexpressed. Furthermore, the present study observed that CYP17 is overexpressed via STAT3 phosphorylation in endometrial cancer cells, which grow at a high concentration of PGE2, resulting in increased androgen secretion. Concentrations of estrogen and progesterone were not elevated, while the concentration of androgens was. Overall, a high concentration of androgens caused increased invasion of endometrial cancer cells. A high concentration of androgens, which is initiated by a high expression of PTGES2 and a high concentration of PGE2, is an important promoter of myometrial invasion in endometrial cancer.

Keywords: cytochrome P450 17α hydroxylase; endometrial cancer; prostaglandin E2; signal transducer and activator of transcription 3.