n-Type PbSe Quantum Dots via Post-Synthetic Indium Doping

J Am Chem Soc. 2018 Oct 24;140(42):13753-13763. doi: 10.1021/jacs.8b07910. Epub 2018 Oct 9.

Abstract

We developed a postsynthetic treatment to produce impurity n-type doped PbSe QDs with In3+ as the substitutional dopant. Increasing the incorporated In content is accompanied by a gradual bleaching of the interband first-exciton transition and concurrently the appearance of a size-dependent, intraband absorption, suggesting the controlled introduction of delocalized electrons into the QD band edge states under equilibrium conditions. We compare the optical properties of our In-doped PbSe QDs to cobaltocene treated QDs, where the n-type dopant arises from remote reduction of the PbSe QDs and observe similar behavior. Spectroelectrochemical measurements also demonstrate characteristic n-type signatures, including both an induced absorption within the electrochemical bandgap and a shift of the Fermi-level toward the conduction band. Finally, we demonstrate that the In3+ dopants can be reversibly removed from the PbSe QDs, whereupon the first exciton bleach is recovered. Our results demonstrate that PbSe QDs can be controllably n-type doped via impurity aliovalent substitutional doping.