Exciton-polariton topological insulator

Nature. 2018 Oct;562(7728):552-556. doi: 10.1038/s41586-018-0601-5. Epub 2018 Oct 8.

Abstract

Topological insulators-materials that are insulating in the bulk but allow electrons to flow on their surface-are striking examples of materials in which topological invariants are manifested in robustness against perturbations such as defects and disorder1. Their most prominent feature is the emergence of edge states at the boundary between areas with different topological properties. The observable physical effect is unidirectional robust transport of these edge states. Topological insulators were originally observed in the integer quantum Hall effect2 (in which conductance is quantized in a strong magnetic field) and subsequently suggested3-5 and observed6 to exist without a magnetic field, by virtue of other effects such as strong spin-orbit interaction. These were systems of correlated electrons. During the past decade, the concepts of topological physics have been introduced into other fields, including microwaves7,8, photonic systems9,10, cold atoms11,12, acoustics13,14 and even mechanics15. Recently, topological insulators were suggested to be possible in exciton-polariton systems16-18 organized as honeycomb (graphene-like) lattices, under the influence of a magnetic field. Exciton-polaritons are part-light, part-matter quasiparticles that emerge from strong coupling of quantum-well excitons and cavity photons19. Accordingly, the predicted topological effects differ from all those demonstrated thus far. Here we demonstrate experimentally an exciton-polariton topological insulator. Our lattice of coupled semiconductor microcavities is excited non-resonantly by a laser, and an applied magnetic field leads to the unidirectional flow of a polariton wavepacket around the edge of the array. This chiral edge mode is populated by a polariton condensation mechanism. We use scanning imaging techniques in real space and Fourier space to measure photoluminescence and thus visualize the mode as it propagates. We demonstrate that the topological edge mode goes around defects, and that its propagation direction can be reversed by inverting the applied magnetic field. Our exciton-polariton topological insulator paves the way for topological phenomena that involve light-matter interaction, amplification and the interaction of exciton-polaritons as a nonlinear many-body system.

Publication types

  • Research Support, Non-U.S. Gov't