Interactions and Magnetotransport through Spin-Valley Coupled Landau Levels in Monolayer MoS_{2}

Phys Rev Lett. 2018 Dec 14;121(24):247701. doi: 10.1103/PhysRevLett.121.247701.

Abstract

The strong spin-orbit coupling and the broken inversion symmetry in monolayer transition metal dichalcogenides results in spin-valley coupled band structures. Such a band structure leads to novel applications in the fields of electronics and optoelectronics. Density functional theory calculations as well as optical experiments have focused on spin-valley coupling in the valence band. Here we present magnetotransport experiments on high-quality n-type monolayer molybdenum disulphide (MoS_{2}) samples, displaying highly resolved Shubnikov-de Haas oscillations at magnetic fields as low as 2 T. We find the effective mass 0.7m_{e}, about twice as large as theoretically predicted and almost independent of magnetic field and carrier density. We further detect the occupation of the second spin-orbit split band at an energy of about 15 meV, i.e., about a factor of 5 larger than predicted. In addition, we demonstrate an intricate Landau level spectrum arising from a complex interplay between a density-dependent Zeeman splitting and spin- and valley-split Landau levels. These observations, enabled by the high electronic quality of our samples, testify to the importance of interaction effects in the conduction band of monolayer MoS_{2}.