Revealing Color Forces with Transverse Polarized Electron Scattering

Phys Rev Lett. 2019 Jan 18;122(2):022002. doi: 10.1103/PhysRevLett.122.022002.

Abstract

The Spin Asymmetries of the Nucleon Experiment measured two double spin asymmetries using a polarized proton target and polarized electron beam at two beam energies, 4.7 and 5.9 GeV. A large-acceptance open-configuration detector package identified scattered electrons at 40° and covered a wide range in Bjorken x (0.3<x<0.8). Proportional to an average color Lorentz force, the twist-3 matrix element, d[over ˜]_{2}^{p}, was extracted from the measured asymmetries at Q^{2} values ranging from 2.0 to 6.0 GeV^{2}. The data display the opposite sign compared to most quark models, including the lattice QCD result, and an unexpected scale dependence. Furthermore, when combined with the neutron data in the same Q^{2} range the results suggest a flavor independent average color Lorentz force.