Biocompatible organic-inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

Beilstein J Nanotechnol. 2019 Feb 8:10:399-411. doi: 10.3762/bjnano.10.39. eCollection 2019.

Abstract

We have constructed thin films of organic-inorganic hybrid character by combining titanium tetra-isopropoxide (TTIP) and the nucleobases thymine, uracil or adenine using the molecular layer deposition (MLD) approach. Such materials have potential as bioactive coatings, and the bioactivity of these films is described in our recent work [Momtazi, L.; Dartt, D. A.; Nilsen, O.; Eidet, J. R. J. Biomed. Mater. Res., Part A 2018, 106, 3090-3098. doi:10.1002/jbm.a.36499]. The growth was followed by in situ quartz crystal microbalance (QCM) measurements and all systems exhibited atomic layer deposition (ALD) type of growth. The adenine system has an ALD temperature window between 250 and 300 °C, while an overall reduction in growth rate with increasing temperature was observed for the uracil and thymine systems. The bonding modes of the films have been further characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction, confirming the hybrid nature of the as-deposited films with an amorphous structure where partial inclusion of the TTIP molecule occurs during growth. The films are highly hydrophilic, while the nucleobases do leach in water providing an amorphous structure mainly of TiO2 with reduced density and index of refraction.

Keywords: ALD; MLD; bioactive materials; hybrid materials; nucleobases.