Invasive earthworm and soil litter response to the experimental removal of white-tailed deer and an invasive shrub

Ecology. 2019 May;100(5):e02688. doi: 10.1002/ecy.2688. Epub 2019 Apr 4.

Abstract

Recent studies have shown that complex species interactions can regulate above- and belowground processes in terrestrial systems. Ungulate herbivory and invasive species are known to have strong effects on plant communities in some systems, but their impacts on soil biota and belowground processes are lesser known. Growing evidence suggests white-tailed deer (Odocoileus virginianus) and invasive plants facilitate increased abundance of exotic earthworms in temperate forests of the eastern United States. We conducted an experimental study that manipulated deer access and the presence of an invasive understory shrub in an eastern deciduous forest of southwestern Ohio, USA, from 2013 to 2017. Earthworm density and biomass, and standing litter biomass were measured in five paired deer access and exclosure plots, each with a split-plot removal of Amur honeysuckle (Lonicera maackii). Earthworm density declined in response to the experimental exclusion of deer, with earthworm density decreasing over time in the deer exclosure plots relative to deer access plots. Deer exclusion produced greater variation in earthworm species composition relative to access plots. Multivariate analyses indicated that larger earthworms in the genus Lumbricus were associated with deer exclosure plots, while smaller endogeic species were ubiquitous in both treatments. Standing litter biomass decreased over time in the deer-access plots. In contrast, honeysuckle removal had little effect on earthworm density and standing litter biomass. There was an interaction between deer and honeysuckle treatments on earthworm biomass, with honeysuckle removal reducing earthworm biomass when deer were excluded. Our results demonstrate strong effects of herbivores on invasive earthworms and ecosystem processes, but indicate a weaker influence of invasive shrubs. Further, our findings suggest that the effects of deer overabundance in forest ecosystems are potentially reversible with long-term intervention.

Keywords: Lonicera maackii; aboveground-belowground interactions; earthworms; invasion; leaf litter; temperate deciduous forest; white-tailed deer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Deer*
  • Ecosystem
  • Forests
  • Oligochaeta*
  • Soil

Substances

  • Soil