Impact of the Hydraulic Fracturing on Indoor Radon Concentrations in Ohio: A Multilevel Modeling Approach

Front Public Health. 2019 Apr 10:7:76. doi: 10.3389/fpubh.2019.00076. eCollection 2019.

Abstract

According to the United States Environmental Protection Agency (U.S. EPA), exposure to radon gas is the second leading cause of lung cancer after smoking. Extant research that has reported that fracking activity increases the radon levels. "Fracking" also known as hydraulic fracturing, which is a technology that is used to extract naturally occurring shale gas from the Marcellus and the Utica shales. Based on the data from the Ohio Radon Information System (ORIS) from 2007 to 2014 in Ohio, this research uses multilevel modeling (MLM) to examine the association between the incidences of hydraulic fracturing and elevated airborne radon levels. The ORIS data include information on 118,421 individual records of households geocoded to zip code areas. Individual records include radon concentrations, device types of the test, and seasons. Euclidean distances between zip code centroid to the 1,162 fracking wells are measured at the zip code level. Two additional zip code variables, namely the population density and urbanicity, are also included as control variables. Multilevel modeling results show that at the zip code level, distance to fracking wells and population density are significant and negative covariate of the radon concentration. By comparing with urban areas, urban clusters, and rural areas are significant which linked to higher radon concentrations. These findings lend support to the effect of hydraulic fracturing in influencing radon concentrations, and promote public policies that need to be geographically adaptable.

Keywords: GIS; hydraulic fracking; multilevel modeling; radon; zip code.