Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells

Sci Immunol. 2019 Jul 19;4(37):eaau9039. doi: 10.1126/sciimmunol.aau9039.

Abstract

The peptide-dependent stability of MHC class I molecules poses a substantial challenge for their use in peptide-MHC multimer-based approaches to comprehensively analyze T cell immunity. To overcome this challenge, we demonstrate the use of functionally empty MHC class I molecules stabilized by a disulfide bond to link the α1 and α2 helices close to the F pocket. Peptide-loaded disulfide-stabilized HLA-A*02:01 shows complete structural overlap with wild-type HLA-A*02:01. Peptide-MHC multimers prepared using disulfide-stabilized HLA-A*02:01, HLA-A*24:02, and H-2Kb can be used to identify antigen-specific T cells, and they provide a better staining index for antigen-specific T cell detection compared with multimers prepared with wild-type MHC class I molecules. Disulfide-stabilized MHC class I molecules can be loaded with peptide in the multimerized form without affecting their capacity to stain T cells. We demonstrate the value of empty-loadable tetramers that are converted to antigen-specific tetramers by a single-step peptide addition through their use to identify T cells specific for mutation-derived neoantigens and other cancer-associated antigens in human melanoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Disulfides / chemistry
  • Disulfides / immunology
  • Histocompatibility Antigens Class I / chemistry
  • Histocompatibility Antigens Class I / immunology*
  • Humans
  • Peptides / chemistry
  • Peptides / immunology*
  • T-Cell Antigen Receptor Specificity / immunology*
  • T-Lymphocytes / immunology*

Substances

  • Disulfides
  • Histocompatibility Antigens Class I
  • Peptides