Early life growth and adult telomere length in a Filipino cohort study

Am J Hum Biol. 2019 Nov;31(6):e23299. doi: 10.1002/ajhb.23299. Epub 2019 Aug 5.

Abstract

Objective: We investigated the relationship between early life growth patterns and blood telomere length (TL) in adulthood using conditional measures of lean and fat mass growth to evaluate potentially sensitive periods of early life growth.

Methods: This study included data from 1562 individuals (53% male; age 20-22 years) participating in the Cebu Longitudinal Health and Nutrition Survey, located in metropolitan Cebu, Philippines. Primary exposures included length-for-age z-score (HAZ) and weight-for-age z-score (WAZ) at birth and conditional measures of linear growth and weight gain during four postnatal periods: 0-6, 6-12, and 12-24 months, and 24 months to 8.5 years. TL was measured at ~21 years of age. We estimated associations using linear regression.

Results: The study sample had an average gestational age (38.5 ± 2 weeks) and birth size (HAZ = -0.2 ± 1.1, WAZ = -0.7 ± 1.0), but by age 8.5 years had stunted linear growth (HAZ = -2.1 ± 0.9) and borderline low weight (WAZ = -1.9 ± 1.0) relative to World Health Organization references. Heavier birth weight was associated with longer TL in early adulthood (P = .03), but this association was attenuated when maternal age at birth was included in the model (P = .07). Accelerated linear growth between 6 and 12 months was associated with longer TL in adulthood (P = .006), whereas weight gain between 12 and 24 months was associated with shorter TL in adulthood (P = .047).

Conclusions: In Cebu, individuals who were born heavier have longer TL in early adulthood, but that birthweight itself may not explain the association. Findings suggest that childhood growth is associated with the cellular senescence process in adulthood, implying early life well-being may be linked to adult health.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Growth*
  • Humans
  • Longitudinal Studies
  • Male
  • Philippines
  • Telomere / physiology*
  • Weight Gain*
  • Young Adult