Novel Bonding Mode in Phosphine Haloboranes

ACS Omega. 2018 Jan 19;3(1):608-614. doi: 10.1021/acsomega.7b01529. eCollection 2018 Jan 31.

Abstract

We have predicted, using a wide range of theoretical models, the potential energy surfaces of dative bond stretching in some phosphine haloboranes and closely associated analogues. It is shown that these dative complexes demonstrate unusual bond stretching potentials that are characterized by having multiple inflection points and are not able to be fit to any traditional Morse or Lennard-Jones-type curve. Specifically, in the case of Cl3B-PH3, this effect is so pronounced that the surface actually exhibits two distinct minima. To the best of our knowledge, this is the first example of such a unique bonding phenomenon reported for these species and is explained by the competition between the energetic cost of the required pyramidalization of the Lewis acid to form a dative bond and the stabilization from the favorable attraction between the Lewis acid and base. When the cost of pyramidalization of the Lewis acid is high relative to the strength of the interaction between the acid and base, the potential well associated with dative bonding is significantly weakened and the result is a relatively flat potential energy surface that is susceptible to the unusual characteristics described herein.