Covalent Poly(lactic acid) Nanoparticles for the Sustained Delivery of Naloxone

ACS Appl Bio Mater. 2019 Aug 19;2(8):3418-3428. doi: 10.1021/acsabm.9b00380. Epub 2019 Jul 25.

Abstract

The opioid epidemic currently plaguing the United States has been exacerbated by an alarming rise in fatal overdoses as a result of the proliferated abuse of synthetic mu opioid receptor (MOR) agonists, such as fentanyl and its related analogues. Attempts to manage this crisis have focused primarily on widespread distribution of the clinically approved opioid reversal agent naloxone (Narcan); however, due to the intrinsic metabolic lability of naloxone, these measures have demonstrated limited effectiveness against synthetic opioid toxicity. This work reports a novel polymer-based strategy to create a long-acting formulation of naloxone with the potential to address this critical issue by utilizing covalent nanoparticle (cNP) drug delivery technology. Covalently loaded naloxone nanoparticles (Nal-cNPs) were prepared via the naloxone-initiated, ring-opening polymerization (ROP) of l-lactide in the presence of a bifunctional thiourea organocatalyst with subsequent precipitation of the resulting naloxone-poly(l-lactic acid) polymer. This protocol afforded well-defined nanoparticles possessing a drug loading of approximately 7% w/w. The resulting Nal-cNPs demonstrated excellent biocompatibility, while exhibiting sustained linear release kinetics in vitro and blocking the effects of high dose (10 mg/kg) acute morphine for up to 98 h in an in vivo rodent model of neuropathic pain.

Keywords: controlled release; covalent nanoparticles; drug delivery; naloxone; ring-opening polymerization.