Photoenhanced metastable c-axis electrodynamics in stripe-ordered cuprate La1.885Ba0.115CuO4

Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19875-19879. doi: 10.1073/pnas.1908368116. Epub 2019 Sep 16.

Abstract

Quantum materials are amenable to nonequilibrium manipulation with light, enabling modification and control of macroscopic properties. Light-based augmentation of superconductivity is particularly intriguing. Copper-oxide superconductors exhibit complex interplay between spin order, charge order, and superconductivity, offering the prospect of enhanced coherence by altering the balance between competing orders. We utilize terahertz time-domain spectroscopy to monitor the c-axis Josephson plasma resonance (JPR) in La2-xBaxCuO4 (x = 0.115) as a direct probe of superconductivity dynamics following excitation with near-infrared pulses. Starting from the superconducting state, c-axis polarized excitation with a fluence of 100 μJ/cm2 results in an increase of the far-infrared spectral weight by more than an order of magnitude as evidenced by a blueshift of the JPR, interpreted as resulting from nonthermal collapse of the charge order. The photoinduced signal persists well beyond our measurement window of 300 ps and exhibits signatures of spatial inhomogeneity. The electrodynamic response of this metastable state is consistent with enhanced superconducting fluctuations. Our results reveal that La2-xBaxCuO4 is highly sensitive to nonequilibrium excitation over a wide fluence range, providing an unambiguous example of photoinduced modification of order-parameter competition.

Keywords: charge ordering; cuprates; superconductivity.