Therapeutic importance of hydrogen sulfide in age-associated neurodegenerative diseases

Neural Regen Res. 2020 Apr;15(4):653-662. doi: 10.4103/1673-5374.266911.

Abstract

Hydrogen sulfide (H2S) is a gasotransmitter that acts as an antioxidant and exhibits a wide variety of cytoprotective and physiological functions in age-associated diseases. One of the major causes of age-related diseases is oxidative stress. In recent years, the importance of H2S has become clear, although its antioxidant function has not yet been fully explored. The enzymes cystathionine β-synthase, cystathionine γ-lya-se, and 3-mercaptopyruvate sulfurtransferase are involved in the enzymatic production of H2S. Previously, H2S was considered a neuromodulator, given its role in long-term hippocampal potentiation, but it is now also recognized as an antioxidant in age-related neurodegeneration. Due to aerobic metabolism, the central nervous system is vulnerable to oxidative stress in brain aging, resulting in age-associated degenerative diseases. H2S exerts its antioxidant effect by limiting free radical reactions through the activation of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, which protect against the effects of aging by regulating apoptosis-related genes, including p53, Bax, and Bcl-2. This review explores the implications and mechanisms of H2S as an antioxidant in age-associated neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Down syndrome.

Keywords: 3-mercaptopyruvate sulfurtransferase; aging; antioxidant; cystathionine β-synthase; cystathionine γ-lyase; glutathione; hydrogen sulfide; neurodegenerative disease; oxidative stress; reactive oxygen species.

Publication types

  • Review