An Evolving Therapeutic Rationale for Targeting the α7 Nicotinic Acetylcholine Receptor in Autism Spectrum Disorder

Curr Top Behav Neurosci. 2020:45:167-208. doi: 10.1007/7854_2020_136.

Abstract

Abnormalities of cholinergic nuclei, cholinergic projections, and cholinergic receptors, as well as abnormalities of growth factors involved in the maturation and maintenance of cholinergic neurons, have been described in postmortem brains of persons with autism spectrum disorder (ASD). Further, microdeletions of the 15q13.3 locus that encompasses CHRNA7, the gene coding the α7 nicotinic acetylcholine receptor (α7 nAChR), are associated with a spectrum of neurodevelopmental disorders, including ASD. The heterozygous 15q13.3 microdeletion syndrome suggests that diminished or impaired transduction of the acetylcholine (ACh) signal by the α7 nAChR can be a pathogenic mechanism of ASD. The α7 nAChR has a role in regulating the firing and function of parvalbumin (PV)-expressing GABAergic projections, which synchronize the oscillatory output of assemblies of pyramidal neurons onto which they project. Synchronous oscillatory output is an electrophysiological substrate for higher executive functions, such as working memory, and functional connectivity between discrete anatomic areas of the brain. The α7 nAChR regulates PV expression and works cooperatively with the co-expressed NMDA receptor in subpopulations of GABAergic interneurons in mouse models of ASD. An evolving literature supports therapeutic exploration of selectively targeted cholinergic interventions for the treatment of ASD, especially compounds that target the α7 nAChR subtype. Importantly, development and availability of high-affinity, brain-penetrable, α7 nAChR-selective agonists, partial agonists, allosteric agonists, and positive allosteric modulators (PAMs) should facilitate "proof-of-principle/concept" clinical trials. nAChRs are pentameric allosteric proteins that function as ligand-gated ion channel receptors constructed from five constituent polypeptide subunits, all of which share a common structural motif. Importantly, in addition to α7 nAChR-gated Ca2+ conductance causing membrane depolarization, there are emerging data consistent with possible metabotropic functions of this ionotropic receptor. The ability of α7-selective type II PAMs to "destabilize" the desensitized state and promote ion channel opening may afford them therapeutic advantages over orthosteric agonists. The current chapter reviews historic and recent literature supporting selective therapeutic targeting of the α7 nAChR in persons affected with ASD.

Keywords: 15q13.3; Alpha7 nicotinic acetylcholine receptor; Autism spectrum disorder; GABA interneurons.

MeSH terms

  • Animals
  • Autism Spectrum Disorder* / drug therapy
  • Autism Spectrum Disorder* / genetics
  • Chromosome Disorders*
  • Humans
  • Mice
  • Nicotinic Agonists
  • Receptors, Nicotinic*
  • Seizures
  • alpha7 Nicotinic Acetylcholine Receptor

Substances

  • Nicotinic Agonists
  • Receptors, Nicotinic
  • alpha7 Nicotinic Acetylcholine Receptor