Step length symmetry adaptation to split-belt treadmill walking after acquired non-traumatic transtibial amputation

Gait Posture. 2020 Jul:80:162-167. doi: 10.1016/j.gaitpost.2020.05.043. Epub 2020 May 31.

Abstract

Background: Between-limb step length asymmetry is common following transtibial amputation (TTA) and contributes to negative health consequences. There are limited evidence-based interventions targeting reduced gait asymmetry for people with TTA. Split-belt treadmill walking with asymmetrical belt speeds has successfully reduced gait asymmetry in other patient populations. However, individuals with non-traumatic TTA have critical health-related impairments that may influence the ability to respond to split-belt treadmill walking.

Research question: Do people with acquired, non-traumatic TTA adapt and retain a more symmetrical gait pattern in response to split-belt treadmill walking?

Methods: Step length asymmetry was measured during split-belt treadmill walking. Eight participants walked under two alternating belt speed conditions: symmetrical (3 sets; Baseline, TIED1, TIED2) and asymmetrical belt speeds (5 sets; SPLIT1-5). One-way repeated-measures ANOVA with post-hoc Tukey's HSD tests were used to assess adaptation and short-term retention of step length symmetry. Adaptation was assessed as the level of asymmetry during TIED walking following repeated exposure to SPLIT walking. Retention was measured as the change in level of asymmetry during each set of SPLIT walking.

Results: Significant adaptation to split-belt walking was observed from late Baseline to early TIED1 and early TIED2. Between-limb step length asymmetry decreased from late Baseline (5.3 ± 3.4) to early TIED1 (-9.4 ± 3.6) and this change was sustained between early TIED1 and early TIED2 (-11.2 ± 3.1) (ANOVA F = 73.043, p < .001). Adaptations were retained as step length asymmetry decreased from early SPLIT1 (48.5 ± 5.3) to early SPLIT3 (31.4 ± 3.5) to early SPLIT5 (23.9 ± 5.1) (ANOVA F = 35.284, p < .001).

Significance: Individuals with non-traumatic TTA are capable of gait adaptation to split-belt walking and short-term retention of adaptations after removal of the asymmetrical belt speeds. Adaptability of step length symmetry is possible without modification to the prosthetic limb. Split-belt walking should be tested as a potential intervention to help people with acquired, non-traumatic TTA increase between-limb step symmetry.

Keywords: Gait symmetry; Gait training; Non-traumatic amputation; Transtibial.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Aged
  • Amputation, Surgical*
  • Exercise Test
  • Gait*
  • Humans
  • Male
  • Middle Aged
  • Walking / physiology*