Triplet Resonating Valence Bond State and Superconductivity in Hund's Metals

Phys Rev Lett. 2020 Aug 14;125(7):077001. doi: 10.1103/PhysRevLett.125.077001.

Abstract

A central idea in strongly correlated systems is that doping a Mott insulator leads to a superconductor by transforming the resonating valence bonds (RVBs) into spin-singlet Cooper pairs. Here, we argue that a spin-triplet RVB (tRVB) state, driven by spatially, or orbitally anisotropic ferromagnetic interactions can provide the parent state for triplet superconductivity. We apply this idea to the iron-based superconductors, arguing that strong on site Hund's interactions develop intra-atomic tRVBs between the t_{2g} orbitals. On doping, the presence of two iron atoms per unit cell allows these interorbital triplets to coherently delocalize onto the Fermi surface, forming a fully gapped triplet superconductor. This mechanism gives rise to a unique staggered structure of on site pair correlations, detectable as an alternating π phase shift in a scanning Josephson tunneling microscope.