Design and performance of high-temperature furnace and cell holder for in situ spectroscopic, electrochemical, and radiolytic investigations of molten salts

Rev Sci Instrum. 2020 Aug 1;91(8):083105. doi: 10.1063/1.5140463.

Abstract

To facilitate the development of molten salt reactor technologies, a fundamental understanding of the physical and chemical properties of molten salts under the combined conditions of high temperature and intense radiation fields is necessary. Optical spectroscopic (UV-Vis-near IR) and electrochemical techniques are powerful analytical tools to probe molecular structure, speciation, thermodynamics, and kinetics of solution dynamics. Here, we report the design and fabrication of three custom-made apparatus: (i) a multi-port spectroelectrochemical furnace equipped with optical spectroscopic and electrochemical instrumentation, (ii) a high-temperature cell holder for time-resolved optical detection of radiolytic transients in molten salts, and (iii) a miniaturized spectroscopy furnace for the investigation of steady-state electron beam effects on molten salt speciation and composition by optical spectroscopy. Initial results obtained with the spectroelectrochemical furnace (i) and high-temperature cell holder (ii) are reported.