Role of RIN1 on telomerase activity driven by EGF-Ras mediated signaling in breast cancer

Exp Cell Res. 2020 Nov 15;396(2):112318. doi: 10.1016/j.yexcr.2020.112318. Epub 2020 Oct 16.

Abstract

Epidermal growth factor (EGF)-receptor regulates several downstream signaling pathways upon EGF stimulation that involves cell proliferation, migration and invasion. Internalized EGF-receptor is either recycled or degraded, which fate is regulated in part by Ras interference 1 (RIN1). In this study, we tested the hypothesis that RIN1, a Ras effector protein and Rab5 guanine nucleotide exchange factor, controls several signaling molecules leading to the modulation of the telomerase activity; thus, allowing proper cell proliferation. We report that expression of RIN1 completely blocked proliferation of MCF-12 A and MCF-7 cells, while partially inhibited proliferation of MDA-MB-231 cells upon EGF stimulation. Furthermore, expression of the C-terminal region of RIN1 selectively plays a critical role in the inhibition of the proliferation of MDA-MB-231 cells. However, this inhibitory effect was specifically affected by the independent expression of RIN1:Vsp9 and RIN1:RA domains. Additionally, endogenous level of expression of RIN1 was decreased in metastatic MDA-MB-231 cells as compared with non-tumorigenic MCF-12 A cells. We observed that expression of RIN1:R94A mutant blocked the proliferation of MDA-MB-231 cells, while expression of RIN1:Y561F and RIN1:R629A mutants completely reversed the inhibitory effect of RIN1:WT. Consistent with our observations, we found that expression of RIN1:WT in MDA-MB-231 cells diminished both protein kinase B (AKT) and extracellular-signal-regulated kinase 1/2 (ERK1/2) activities while p38 mitogen-activated protein kinases (p38 MAPK) and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) were unaffected, but it produced downregulation of cellular-myelocytomatosis (c-Myc), erythroblast transformation specific (Ets2) and signal transducer and activator of transcription 3 (Stat3) activities. Inversely, expression of high-mobility group box 1 (HMBG1) was inhibited whereas expression of forkhead box transcription factor 1 (FOXO1) was increased in cells expressing RIN1. Interestingly, expression of RIN1 blocked telomerase activity and human telomerase reverse transcriptase (hTERT) expression, which correlated with the downregulations of c-Myc, Ets-2 and Stat3 activation. Taken together these findings indicate that RIN1 is a critical player in the modulation of the telomerase activity as well as hTERT expression in MDA-MB-231 cells upon EGF stimulation.

Keywords: Breast cancer cell; EGF; RIN1; Signaling; hTert.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Proliferation
  • Epidermal Growth Factor / metabolism*
  • Epithelial Cells / drug effects
  • Epithelial Cells / metabolism
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Intracellular Signaling Peptides and Proteins / chemistry
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Signal Transduction*
  • Telomerase / metabolism*
  • Transcription, Genetic
  • ras Proteins / metabolism*

Substances

  • Intracellular Signaling Peptides and Proteins
  • RIN1 protein, human
  • Epidermal Growth Factor
  • Telomerase
  • ras Proteins