Interstellar nitrile anions: Detection of C3N- and C5N- in TMC-1

Astron Astrophys. 2020 Sep 23:641:L9. doi: 10.1051/0004-6361/202039231. eCollection 2020 Sep.

Abstract

We report on the first detection of C3N- and C5N- towards the cold dark core TMC-1 in the Taurus region, using the Yebes 40 m telescope. The observed C3N/C3N- and C5N/C5N- abundance ratios are ~140 and ~2, respectively; that is similar to those found in the circumstellar envelope of the carbon-rich star IRC +10216. Although the formation mechanisms for the neutrals are different in interstellar (ion-neutral reactions) and circumstellar clouds (photodissociation and radical-neutral reactions), the similarity of the C3N/C3N- and C5N/C5N- abundance ratios strongly suggests a common chemical path for the formation of these anions in interstellar and circumstellar clouds. We discuss the role of radiative electronic attachment, reactions between N atoms and carbon chain anions C n -, and that of H- reactions with HC3N and HC5N as possible routes to form C n N-. The detection of C5N- in TMC-1 gives strong support for assigning to this anion the lines found in IRC +10216, as it excludes the possibility of a metal-bearing species, or a vibrationally excited state. New sets of rotational parameters have been derived from the observed frequencies in TMC-1 and IRC +10216 for C5N- and the neutral radical C5N.

Keywords: Astrochemistry; ISM: individual (TMC-1); ISM: molecules; line: identification; molecular data.