Investigating the utilization of beam-specific apertures for the intensity-modulated proton therapy (IMPT) head and neck cancer plans

Med Dosim. 2021;46(2):e7-e11. doi: 10.1016/j.meddos.2020.10.006. Epub 2020 Nov 24.

Abstract

Intensity-modulated proton therapy (IMPT) planning for the head and neck (HN) cancer often requires the use of the range shifter, which can increase the lateral penumbrae of the pencil proton beam in the patient, thus leading to an increase in unnecessary dose to the organs at risks (OARs) in proximity to the target volumes. The primary goal of the current study was to investigate the dosimetric benefits of utilizing beam-specific apertures for the IMPT HN cancer plans. The current retrospective study included computed tomography datasets of 10 unilateral HN cancer patients. The clinical target volume (CTV) was divided into low-risk CTV1 and high-risk CTV2. Total dose prescriptions to the CTV1 and CTV2 were 54 Gy(RBE) and 70 Gy(RBE), respectively, with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized (patient setup uncertainty = 3 mm; range uncertainty = 3.5%) on the CTVs. For each patient, 2 sets of plans were generated: (1) without beam-specific aperture (WOBSA), and (2) with beam-specific aperture (WBSA). Specifically, both the WOBSA and WBSA of the given patient used identical beam angles, air gap, optimization structures, optimization constraints, and optimization settings. Target coverage and homogeneity index were comparable in both the WOBSA and WBSA plans with no statistical significance (p > 0.05). On average, the mean dose in WBSA plans was reduced by 12.1%, 2.9%, 3.0%, 3.8%, and 5.2% for the larynx, oral cavity, parotids, superior pharyngeal constrictor muscle, and inferior pharyngeal constrictor muscle, respectively. The dosimetric results of the OARs were found to be statistically significant (p < 0.05). The use of the beam-specific apertures did not deteriorate the coverage and homogeneity in the target volume and allowed for a reduction in mean dose to the OARs with an average difference up to 12.1%.

Keywords: Aperture; Collimation; Head and neck; IMPT; Proton therapy.

MeSH terms

  • Head and Neck Neoplasms* / radiotherapy
  • Humans
  • Organs at Risk
  • Proton Therapy*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Radiotherapy, Intensity-Modulated*
  • Retrospective Studies