Machine Learning for Accurate Intraoperative Pediatric Middle Ear Effusion Diagnosis

Pediatrics. 2021 Apr;147(4):e2020034546. doi: 10.1542/peds.2020-034546. Epub 2021 Mar 17.

Abstract

Objectives: Misdiagnosis of acute and chronic otitis media in children can result in significant consequences from either undertreatment or overtreatment. Our objective was to develop and train an artificial intelligence algorithm to accurately predict the presence of middle ear effusion in pediatric patients presenting to the operating room for myringotomy and tube placement.

Methods: We trained a neural network to classify images as " normal" (no effusion) or "abnormal" (effusion present) using tympanic membrane images from children taken to the operating room with the intent of performing myringotomy and possible tube placement for recurrent acute otitis media or otitis media with effusion. Model performance was tested on held-out cases and fivefold cross-validation.

Results: The mean training time for the neural network model was 76.0 (SD ± 0.01) seconds. Our model approach achieved a mean image classification accuracy of 83.8% (95% confidence interval [CI]: 82.7-84.8). In support of this classification accuracy, the model produced an area under the receiver operating characteristic curve performance of 0.93 (95% CI: 0.91-0.94) and F1-score of 0.80 (95% CI: 0.77-0.82).

Conclusions: Artificial intelligence-assisted diagnosis of acute or chronic otitis media in children may generate value for patients, families, and the health care system by improving point-of-care diagnostic accuracy. With a small training data set composed of intraoperative images obtained at time of tympanostomy tube insertion, our neural network was accurate in predicting the presence of a middle ear effusion in pediatric ear cases. This diagnostic accuracy performance is considerably higher than human-expert otoscopy-based diagnostic performance reported in previous studies.

MeSH terms

  • Algorithms
  • Humans
  • Intraoperative Period
  • Machine Learning*
  • Middle Ear Ventilation
  • Neural Networks, Computer
  • Otitis Media with Effusion / diagnosis*
  • Otitis Media with Effusion / surgery
  • Otoscopy