Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents

Environ Pollut. 2021 Aug 15:283:117111. doi: 10.1016/j.envpol.2021.117111. Epub 2021 Apr 10.

Abstract

In this study, an electrokinetic technique for remediation of Pb2+, Zn2+ and Cu2+ contaminated soil was explored using sodium alginate (SA) and chitosan (CTS) as promising biodegradable complexing agents. The highest Cu2+ (95.69%) and Zn2+ (95.05%) removal rates were obtained at a 2 wt% SA dosage, which demonstrated that SA significantly improved the Cu2+ and Zn2+ removal efficiency during electrokinetic process. The abundant functional groups of SA allowed metal ions desorption from soil via ion-exchange, complexation, and electrolysis. Pb2+ ions were difficult to remove from soil by SA due to the higher gelation affinity with Pb2+ than Cu2+ and Zn2+, despite the Pb2+ exchangeable fraction partially transforming to the reducible and oxidizable fractions. CTS could complex metal ions and migrate into the catholyte under the electric field to form crosslinked CTS gelations. Consequently, this study proved the suitability of biodegradable complexing agents for treating soil contaminated with heavy metals using electrokinetic remediation.

Keywords: Chitosan; Electrokinetic remediation; Heavy metals; Sodium alginate.

MeSH terms

  • Environmental Pollution
  • Environmental Restoration and Remediation*
  • Metals, Heavy* / analysis
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants