Ensemble synchronization in the reassembly of Hydra's nervous system

Curr Biol. 2021 Sep 13;31(17):3784-3796.e3. doi: 10.1016/j.cub.2021.06.047. Epub 2021 Jul 22.

Abstract

Although much is known about how the structure of the nervous system develops, it is still unclear how its functional modularity arises. A dream experiment would be to observe the entire development of a nervous system, correlating the emergence of functional units with their associated behaviors. This is possible in the cnidarian Hydra vulgaris, which, after its complete dissociation into individual cells, can reassemble itself back together into a normal animal. We used calcium imaging to monitor the complete neuronal activity of dissociated Hydra as they reaggregated over several days. Initially uncoordinated neuronal activity became synchronized into coactive neuronal ensembles. These local modules then synchronized with others, building larger functional ensembles that eventually extended throughout the entire reaggregate, generating neuronal rhythms similar to those of intact animals. Global synchronization was not due to neurite outgrowth but to strengthening of functional connections between ensembles. We conclude that Hydra's nervous system achieves its functional reassembly through the hierarchical modularity of neuronal ensembles. VIDEO ABSTRACT.

Keywords: Hydra; calcium imaging; hierarchical modularity; neural circuits; neurodevelopment; regeneration; self-organization.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Video-Audio Media

MeSH terms

  • Animals
  • Calcium
  • Hydra* / physiology
  • Nervous System
  • Neurons / physiology

Substances

  • Calcium