Two-Color IRMPD Applied to Conformationally Complex Ions: Probing Cold Ion Structure and Hot Ion Unfolding

J Phys Chem A. 2021 Oct 28;125(42):9394-9404. doi: 10.1021/acs.jpca.1c08388. Epub 2021 Oct 13.

Abstract

Two-color infrared multiphoton dissociation (2C-IRMPD) spectroscopy is a technique that mitigates spectral distortions due to nonlinear absorption that is inherent to one-color IRMPD. We use a 2C-IRMPD scheme that incorporates two independently tunable IR sources, providing considerable control over the internal energy content and type of spectrum obtained by varying the trap temperature, the time delays and fluences of the two infrared lasers, and whether the first or second laser wavelength is scanned. In this work, we describe the application of this variant of 2C-IRMPD to conformationally complex peptide ions. The 2C-IRMPD technique is used to record near-linear action spectra of both cations and anions with temperatures ranging from 10 to 300 K. We also determine the conditions under which it is possible to record IR spectra of single conformers in a conformational mixture. Furthermore, we demonstrate the capability of the technique to explore conformational unfolding by recording IR spectra with widely varying internal energy in the ion. The protonated peptide ions YGGFL (NH3+-Tyr-Gly-Gly-Phe-Leu, Leu-enkephalin) and YGPAA (NH3+-Tyr-Gly-Pro-Ala-Ala) are used as model systems for exploring the advantages and disadvantages of the method when applied to conformationally complex ions.