Overexpression of Long Noncoding RNA H19 Inhibits Cardiomyocyte Apoptosis in Neonatal Rats with Hypoxic-Ischemic Brain Damage Through the miR-149-5p/LIF/PI3K/Akt Axis

Biopreserv Biobank. 2021 Oct;19(5):376-385. doi: 10.1089/bio.2020.0088.

Abstract

Hypoxic-ischemic brain damage (HIBD) is a leading cause of fatality and neural system injury in neonates. This study aims to explore the effect of long noncoding RNA H19 on cardiomyocyte apoptosis in neonatal rats with HIBD. The neonatal rat model of HIBD was established. The cerebral infarction volume and apoptosis index of cardiomyocyte increased, while H19 expression decreased in neonatal rats with HIBD. After the lentivirus vector of overexpressed H19 was injected into neonatal rats with HIBD, the cardiomyocyte apoptosis was suppressed; levels of inflammatory factors and oxidative stress injury of myocardial tissues were reduced. The binding relationships between H19 and miR-149-5p, and miR-149-5p and leukemia inhibitory factor (LIF) were predicted by a bioinformatics website and verified using the dual-luciferase reporter gene assay. H19 competitively bound to miR-149-5p to upregulate LIF expression and activate the PI3K/Akt pathway. Moreover, a functional rescue experiment was carried out. Injection of Wortmannin reversed the inhibitory effect of H19 overexpression on cardiomyocyte apoptosis in neonatal rats with HIBD. It could be concluded that H19 competitively bound to miR-149-5p to upregulate LIF expression and activate the PI3K/Akt pathway, thus reducing cardiomyocyte apoptosis in neonatal rats with HIBD. This study may offer new insights for HIBD treatment.

Keywords: LIF; PIK3/Akt; apoptosis; cardiomyocyte; hypoxic-ischemic brain damage; lncRNA-H19; miR-149-5p.

MeSH terms

  • Animals
  • Animals, Newborn
  • Apoptosis
  • Brain / metabolism
  • Leukemia Inhibitory Factor
  • MicroRNAs* / genetics
  • Myocytes, Cardiac / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • RNA, Long Noncoding* / genetics
  • Rats

Substances

  • Leukemia Inhibitory Factor
  • MicroRNAs
  • RNA, Long Noncoding
  • Proto-Oncogene Proteins c-akt