Noncanonical genomic imprinting in the monoamine system determines naturalistic foraging and brain-adrenal axis functions

Cell Rep. 2022 Mar 8;38(10):110500. doi: 10.1016/j.celrep.2022.110500.

Abstract

Noncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles affect sons while daughters are under paternal allelic control. Each parental allele controls specific action sequences reflecting decisions in naive or familiar contexts. The maternal Ddc allele is preferentially expressed in subsets of hypothalamic GABAergic neurons, while the paternal allele predominates in subsets of adrenal cells. Each Ddc allele affects distinct molecular and endocrine components of the brain-adrenal axis. Thus, monoaminergic noncanonical imprinting has ethological roles in foraging and endocrine functions and operates by affecting discrete subsets of cells.

Keywords: adrenaline; decision making; dopa decarboxylase; epigenetics; foraging; genomic imprinting; hypothalamic-pituitary-adrenal axis; machine learning; monoamine; tyrosine hydroxylase.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alleles
  • Animals
  • Brain* / metabolism
  • Genomic Imprinting*
  • Heterozygote
  • Mice