Unified, Asymmetric Total Synthesis of the Asnovolins and Related Spiromeroterpenoids: A Fragment Coupling Approach

J Am Chem Soc. 2022 Jul 20;144(28):12970-12978. doi: 10.1021/jacs.2c05366. Epub 2022 Jul 6.

Abstract

3,5-Dimethylorsellinic acid (DMOA)-derived spiromeroterpenoids are a unique natural product family with attractive structures, unconventional stereochemistry, and potent biological activities. Herein, we report the first asymmetric total syntheses of the asnovolins, DMOA-derived spiromeroterpenoids. The spirocyclic skeleton was efficiently assembled through a sterically hindered bis-neopentyl 1,2-addition coupling/oxidative Michael addition sequence. The unusual axial C12-methyl stereochemistry was established via metal hydrogen atom transfer (MHAT) reduction involving a chair-to-boat conformational change. The mechanism of the HAT process was studied through both deuterium labeling and computational studies. Attempted late-stage alkene isomerization of an exocyclic enone proved to be challenging and resulted in hetero-Diels-Alder dimerization, which ultimately led to development of an alternative desaturation/coupling sequence. Endgame core modifications including orthogonal desaturation, Sc(III)-promoted regioselective Baeyer-Villiger oxidation, and Meerwein-Ponndorf-Verley reduction enabled collective syntheses of five asnovolin-related natural products. This study demonstrates the utility of anionic fragment coupling to assemble a sterically congested molecular framework and provides a foundation for the synthesis of spiromeroterpenoid congeners with higher oxidation states for biological studies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anions
  • Biological Products*
  • Dimerization
  • Oxidation-Reduction
  • Stereoisomerism

Substances

  • Anions
  • Biological Products