In vitro evolution predicts emerging SARS-CoV-2 mutations with high affinity for ACE2 and cross-species binding

PLoS Pathog. 2022 Jul 18;18(7):e1010733. doi: 10.1371/journal.ppat.1010733. eCollection 2022 Jul.

Abstract

Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin-Converting Enzyme 2 / genetics
  • Animals
  • COVID-19* / genetics
  • Cryoelectron Microscopy
  • Humans
  • Mutation
  • Pandemics
  • Peptidyl-Dipeptidase A / metabolism
  • Protein Binding
  • Rats
  • Receptors, Virus / metabolism
  • SARS-CoV-2* / genetics
  • Spike Glycoprotein, Coronavirus / metabolism

Substances

  • Receptors, Virus
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • Peptidyl-Dipeptidase A
  • Angiotensin-Converting Enzyme 2

Supplementary concepts

  • SARS-CoV-2 variants