Acoustics@Home: Laboratories and student-led projects conducted for an undergraduate engineering experimentation course during the COVID-19 pandemic

J Acoust Soc Am. 2022 Jul;152(1):43. doi: 10.1121/10.0011919.

Abstract

Hands-on, project-based learning was difficult to achieve in online classes during the COVID-19 pandemic. The Engineering Experimentation course at Cooper Union teaches third-year mechanical engineering students practical experimental skills to measure physical phenomenon, which typically requires in-person laboratory classes. In response to COVID, a low-cost, at-home laboratory kit was devised to give students tools to conduct experiments. The kit included a microcontroller acting as a data-acquisition device and custom software to facilitate data transfer. A speed of sound laboratory was designed with the kit to teach skills in data collection, signal processing, and error analysis. The students derived the sound speed by placing two microphones a known distance apart and measuring the time for an impulsive signal to travel from one to the other. The students reported sound speeds from 180.7-477.8 m/s in a temperature range from 273.7-315.9 K. While these reported speeds contained a large amount of error, the exercise allowed the students to learn how to account for sources of error within experiments. This paper also presents final projects designed by the students at home, an impedance tube and two Doppler shift experiments, that exhibit successful and effective low-cost solutions to demonstrate and measure acoustic phenomenon.

MeSH terms

  • Acoustics
  • COVID-19* / epidemiology
  • Humans
  • Laboratories*
  • Pandemics
  • Students