Leaf size and angle vary widely across species: what consequences for light interception?

New Phytol. 2003 Jun;158(3):509-525. doi: 10.1046/j.1469-8137.2003.00765.x.

Abstract

• Architecture can vary widely across species. Both steeper leaf angles and increased self-shading are thought to reduce potential carbon gain by decreasing total light interception. An alternative hypothesis is that steeper leaf angles have evolved to improve day-long carbon gain by emphasising light interception from low angles. • Here we relate variation in architectural properties (leaf angle and leaf size) to cross-species patterns of leaf display, light capture and simulated carbon gain in branching-units of 38 perennial species occurring at two sites in Australian forest. Architectural comparison was made possible by combining 3D-digitising with the architecture model YPLANT. • Species with shallow angled leaves had greater daily light interception and potentially greater carbon gain. Self-shading, rather than leaf angle, explained most variance between species in light capture and potential carbon gain. Species average leaf size was the most important determinant of self-shading. • Our results provide the first cross-species evidence that steeper leaf angles function to reduce exposure to excess light levels during the middle of the day, more than to maximise carbon gain.

Keywords: YPLANT; architecture; digitising; light interception; self-shading.