Selective Methylation by an ArsM S-Adenosylmethionine Methyltransferase from Burkholderia gladioli GSRB05 Enhances Antibiotic Production

Environ Sci Technol. 2022 Oct 4;56(19):13858-13866. doi: 10.1021/acs.est.2c04324. Epub 2022 Sep 16.

Abstract

Arsenic methylation contributes to the formation and diversity of environmental organoarsenicals, an important process in the arsenic biogeochemical cycle. The arsM gene encoding an arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase is widely distributed in members of every kingdom. A number of ArsM enzymes have been shown to have different patterns of methylation. When incubated with inorganic As(III), Burkholderia gladioli GSRB05 has been shown to synthesize the organoarsenical antibiotic arsinothricin (AST) but does not produce either methylarsenate (MAs(V)) or dimethylarsenate (DMAs(V)). Here, we show that cells of B. gladioli GSRB05 synthesize DMAs(V) when cultured with either MAs(III) or MAs(V). Heterologous expression of the BgarsM gene in Escherichia coli conferred resistance to MAs(III) but not As(III). The cells methylate MAs(III) and the AST precursor, reduced trivalent hydroxyarsinothricin (R-AST-OH) but do not methylate inorganic As(III). Similar results were obtained with purified BgArsM. Compared with ArsM orthologs, BgArsM has an additional 37 amino acid residues in a linker region between domains. Deletion of the additional 37 residues restored As(III) methylation activity. Cells of E. coli co-expressing the BgarsL gene encoding the noncanonical radical SAM enzyme that catalyzes the synthesis of R-AST-OH together with the BgarsM gene produce much more of the antibiotic AST compared with E. coli cells co-expressing BgarsL together with the CrarsM gene from Chlamydomonas reinhardtii, which lacks the sequence for additional 37 residues. We propose that the presence of the insertion reduces the fitness of B. gladioli because it cannot detoxify inorganic arsenic but concomitantly confers an evolutionary advantage by increasing the ability to produce AST.

Keywords: ArsM; SAM methyltransferase; arsenic-containing antibiotic; arsinothricin; hydroxyarsinothricin.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Anti-Bacterial Agents
  • Arsenic* / metabolism
  • Arsenicals* / metabolism
  • Arsenites* / metabolism
  • Burkholderia gladioli* / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Methylation
  • Methyltransferases / chemistry
  • Methyltransferases / genetics
  • Methyltransferases / metabolism
  • S-Adenosylmethionine / metabolism

Substances

  • Anti-Bacterial Agents
  • Arsenicals
  • Arsenites
  • arsinothricin
  • S-Adenosylmethionine
  • Methyltransferases
  • Arsenic