Vascular smooth muscle- and myeloid cell-derived integrin α9β1 does not directly mediate the development of atherosclerosis in mice

Atherosclerosis. 2022 Nov:360:15-20. doi: 10.1016/j.atherosclerosis.2022.09.015. Epub 2022 Oct 4.

Abstract

Background and aims: Sushi, von Willebrand factor type A, EGF pentraxin domain-containing 1 (SVEP1), an extracellular matrix protein, is a human coronary artery disease locus that promotes atherosclerosis. We previously demonstrated that SVEP1 induces vascular smooth muscle cell (VSMC) proliferation and an inflammatory phenotype in the arterial wall to enhance the development of atherosclerotic plaque. The only receptor known to interact with SVEP1 is integrin α9β1, a cell surface receptor that is expressed by VSMCs and myeloid lineage-derived monocytes and macrophages. Our previous in vitro studies suggested that integrin α9β1 was necessary for SVEP1-induced VSMC proliferation and inflammation; however, the underlying mechanisms mediated by integrin α9β1 in these cell types during the development of atherosclerosis remain poorly understood.

Methods and results: Here, using cell-specific gene targeting, we investigated the effects of the integrin α9β1 receptor on VSMCs and myeloid cells in mouse models of atherosclerosis. Interestingly, we found that depleting integrin α9β1 in either VSMCs or myeloid cells did not affect the formation or complexity of atherosclerotic plaque in vessels after either 8 or 16 weeks of high fat diet feeding.

Conclusions: Our results indicate that integrin α9β1 in these two cell types does not mediate the in vivo effect of SVEP1 in the development of atherosclerosis. Instead, our results suggest either the presence of other potential receptor(s) or alternative integrin α9β1-expressing cell types responsible for SVEP1 induced signaling in the development of atherosclerosis.

Keywords: Atherosclerosis; Extracellular matrix; Integrin α9β1; Mouse model; SVEP1.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Atherosclerosis* / genetics
  • Atherosclerosis* / metabolism
  • Cell Proliferation
  • Cells, Cultured
  • Epidermal Growth Factor
  • Extracellular Matrix Proteins / metabolism
  • Humans
  • Macrophages / metabolism
  • Mice
  • Muscle, Smooth, Vascular / metabolism
  • Myocytes, Smooth Muscle / metabolism
  • Plaque, Atherosclerotic* / metabolism
  • von Willebrand Factor / metabolism

Substances

  • integrin alpha 9 beta 1
  • von Willebrand Factor
  • Epidermal Growth Factor
  • Extracellular Matrix Proteins