Collision-Induced Dissociation of α-Isomaltose and α-Maltose

J Phys Chem A. 2022 Dec 1;126(47):8799-8808. doi: 10.1021/acs.jpca.2c04278. Epub 2022 Nov 17.

Abstract

Determination of carbohydrate structures remains a considerable challenge. Collision-induced dissociation (CID) tandem mass spectroscopy (MS/MS) is widely used for carbohydrate structure determination. Structural information derived from MS/MS relies on an understanding of the carbohydrate dissociation mechanism. Among various hexose disaccharides, the major dissociation channels (dehydration, glycosidic bond cleavage, and cross-ring dissociation) of 1→2-, 1→3-, and 1→4-linked disaccharide sodium ion adducts can be explained by the dissociation mechanism derived from hexose monosaccharides. However, 1→6-linked disaccharides, which have low branching ratios for dehydration and glycosidic bond cleavage, cannot be explained by the same dissociation mechanism. In this study, we performed high-level quantum chemistry calculations to examine the CID mechanism of the α-isomaltose sodium ion adduct, a 1→6-linked glucose disaccharide. For comparison, we examined the CID dissociation mechanism of the α-maltose sodium ion adduct, a 1→4-linked glucose-disaccharide. Calculations revealed that although α-isomaltose and α-maltose had similar dissociation mechanisms, energy differences between the lowest transition states of various dissociation channels led to different CID fragmentation patterns. The dissociation barriers of dehydration and glycosidic bond cleavage were similar for the two disaccharides, but the cross-ring dissociation, which has the lowest dissociation barrier, exhibited differences in barriers between the disaccharides. The cross-ring dissociation barrier for α-maltose was only slightly lower than those of dehydration and glycosidic bond cleavage. However, the cross-ring dissociation barrier for α-isomaltose was substantially lower than those of dehydration and glycosidic bond cleavage. In addition, most of the α-isomaltose conformers that led to dehydration also led to cross-ring dissociation, resulting in suppression of dehydration by cross-ring dissociation. The findings can explain the low branching ratios for dehydration and glycosidic bond cleavage observed in α-isomaltose CID spectra.

MeSH terms

  • Dehydration
  • Disaccharides
  • Glucose
  • Glycosides
  • Humans
  • Isomaltose*
  • Maltose*
  • Tandem Mass Spectrometry

Substances

  • Isomaltose
  • Maltose
  • Disaccharides
  • Glycosides
  • Glucose