Monolithic Phosphate Interphase for Highly Reversible and Stable Zn Metal Anode

Angew Chem Int Ed Engl. 2023 Jan 23;62(4):e202215600. doi: 10.1002/anie.202215600. Epub 2022 Dec 16.

Abstract

Zinc metal battery (ZMB) is promising as the next generation of energy storage system, but challenges relating to dendrites and corrosion of the zinc anode are restricting its practical application. Here, to stabilize Zn anode, we report a controlled electrolytic method for a monolithic solid-electrolyte interphase (SEI) via a high dipole moment solvent dimethyl methylphosphonate (DMMP). The DMMP-based electrolytes can generate a homogeneous and robust phosphate SEI (Zn3 (PO4 )2 and ZnP2 O6 ). Benefiting from the protecting impact of this in situ monolithic SEI, the zinc electrode exhibits long-term cycling of 4700 h and a high Coulombic efficiency 99.89 % in Zn|Zn and Zn|Cu cell, respectively. The full V2 O5 |Zn battery with DMMP-H2 O hybrid electrolyte exhibits a high capacity retention of 82.2 % following 4000 cycles under 5 A g-1 . The first success in constructing the monolithic phosphate SEI will open a new avenue in electrolyte design for highly reversible and stable Zn metal anodes.

Keywords: Fire Retardant; Hybrid Electrolyte; Phosphate Solvent; Solid Electrolyte Interphase; Zinc Ion Batteries.