Delta Opioid Receptor-Mediated Antidepressant-Like Effects of Diprenorphine in Mice

J Pharmacol Exp Ther. 2023 Mar;384(3):343-352. doi: 10.1124/jpet.122.001182. Epub 2022 Dec 1.

Abstract

Major depressive disorder is a highly common disorder, with a lifetime prevalence in the United States of approximately 21%. Traditional antidepressant treatments are limited by a delayed onset of action and minimal efficacy in some patients. Ketamine is effective and fast-acting, but there are concerns over its abuse liability. Thus, there is a need for safe, fast-acting antidepressant drugs. The opioid buprenorphine shows promise but also has abuse liability due to its mu-agonist component. Preclinical evidence indicates that the delta-opioid system contributes to mood disorders, and delta-opioid agonists are effective in preclinical models of depression- and anxiety-like states. In this study, we test the hypothesis that the mu-opioid antagonist diprenorphine by virtue of its partial delta opioid agonist activity may offer a beneficial profile for an antidepressant medication without abuse liability. Diprenorphine was confirmed to bind with high affinity to all three opioid receptors, and functional experiments for G protein activation verified diprenorphine to be a partial agonist at delta- and kappa-opioid receptors and a mu-antagonist. Studies in C57BL/6 mice demonstrated that an acute dose of diprenorphine produced antidepressant-like effects in the tail suspension test and the novelty-induced hypophagia test that were inhibited in the presence of the delta-selective antagonist, naltrindole. Diprenorphine did not produce convulsions, a side effect of many delta agonists but rather inhibited convulsions caused by the full delta agonist SNC80; however, diprenorphine did potentiate pentylenetetrazole-induced convulsions. Diprenorphine, and compounds with a similar pharmacological profile, may provide efficient and safe rapidly acting antidepressants. SIGNIFICANCE STATEMENT: The management of major depressive disorder, particularly treatment-resistant depression, is a significant unmet medical need. Here we show that the opioid diprenorphine, a compound with mu-opioid receptor antagonist activity and delta- and kappa-opioid receptor partial agonist activities, has rapid onset antidepressant-like activity in animal models. Diprenorphine and compounds with a similar pharmacological profile to diprenorphine should be explored as novel antidepressant drugs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Intramural

MeSH terms

  • Analgesics, Opioid* / pharmacology
  • Animals
  • Antidepressive Agents / pharmacology
  • Depressive Disorder, Major*
  • Diprenorphine* / pharmacology
  • Mice
  • Mice, Inbred C57BL
  • Receptors, Opioid
  • Receptors, Opioid, delta / metabolism
  • Receptors, Opioid, kappa / metabolism
  • Receptors, Opioid, mu / metabolism
  • Seizures / chemically induced

Substances

  • Analgesics, Opioid
  • Antidepressive Agents
  • Diprenorphine
  • Receptors, Opioid
  • Receptors, Opioid, delta
  • Receptors, Opioid, kappa
  • Receptors, Opioid, mu