Proteomics-based trapping with single or multiple inactive mutants reproducibly profiles histone deacetylase 1 substrates

J Proteomics. 2023 Mar 15:274:104807. doi: 10.1016/j.jprot.2022.104807. Epub 2022 Dec 29.

Abstract

Histone deacetylase 1 (HDAC1) plays a key role in diverse cellular processes. With the aberrant expression of HDAC1 linked to many diseases, including cancers, HDAC inhibitors have been used successfully as therapeutics. HDAC1 has been predominantly associated with histone deacetylation and gene expression. Recently, non-histone substrates have revealed diverse roles of HDAC1 beyond epigenetics. To augment discovery of non-histone substrates, we introduced "substrate trapping" to enrich HDAC1 substrates using an inactive mutant. Herein, we performed a series of proteomics studies to test the robustness of HDAC1 substrate trapping. Based on our recent results documenting that different HDAC1 mutants preferentially bound different substrates, which suggested that multiple mutants could be used for efficient trapping, trapping with three single point mutants simultaneously identified several potential substrates uniquely compared to a single mutant alone. However, a greater number of biologically interesting hits were observed using only a single mutant, which suggests that the C151A HDAC1 mutant is the optimal trap. Importantly, comparing independent trials with a single mutant performed by different experimentalists and HEK293 cell populations, trapping was robust and reproducible. Based on the reproducible trapping data, carnosine N-methyltransferase 1 (CARNMT1) was validated as an HDAC1 substrate. The data document that mutant trapping is an effective method for discovery of unanticipated HDAC substrates. SIGNIFICANCE: Histone deacetylase (HDAC) proteins are well established epigenetic transcriptional regulators that deacetylate histone substrates to control gene expression. More recently, deacetylation of non-histone substrates has linked HDAC activity to functions outside of epigenetics. Given the use of HDAC inhibitor drugs as anti-cancer therapeutics, understanding the full functions of HDAC proteins in cell biology is essential to future drug design. To discover unanticipated non-histone substrates and further characterize HDAC functions, inactive mutants have been used to "trap" putative substrates, which were identified with mass spectrometry-based proteomics analysis. Here multiple trapping studies were performed to test the robustness of using inactive mutants and proteomics for HDAC substrate discovery. The data confirm the value of trapping mutants as effective tools to discover HDAC substrates and link HDAC activity to unexpected biological functions.

Keywords: HDAC inhibitor; Histone deacetylase; Substrate proteins; Trapping.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • HEK293 Cells
  • Histone Deacetylase 1* / genetics
  • Histone Deacetylase 1* / metabolism
  • Histone Deacetylase Inhibitors / pharmacology
  • Histone Deacetylases / genetics
  • Histone Deacetylases / metabolism
  • Humans
  • Proteomics* / methods
  • Substrate Specificity

Substances

  • Histone Deacetylase 1
  • Histone Deacetylase Inhibitors
  • Histone Deacetylases