Can vaccine prioritization reduce disparities in COVID-19 burden for historically marginalized populations?

PNAS Nexus. 2022 Mar 2;1(1):pgab004. doi: 10.1093/pnasnexus/pgab004. eCollection 2022 Mar.

Abstract

SARS-CoV-2 vaccination strategies were designed to reduce COVID-19 mortality, morbidity, and health inequities. To assess the impact of vaccination strategies on disparities in COVID-19 burden among historically marginalized populations (HMPs), e.g. Black race and Hispanic ethnicity, we used an agent-based simulation model, populated with census-tract data from North Carolina. We projected COVID-19 deaths, hospitalizations, and cases from 2020 July 1 to 2021 December 31, and estimated racial/ethnic disparities in COVID-19 outcomes. We modeled 2-stage vaccination prioritization scenarios applied to sub-groups including essential workers, older adults (65+), adults with high-risk health conditions, HMPs, or people in low-income tracts. Additionally, we estimated the effects of maximal uptake (100% for HMP vs. 100% for everyone), and distribution to only susceptible people. We found strategies prioritizing essential workers, then older adults led to the largest mortality and case reductions compared to no prioritization. Under baseline uptake scenarios, the age-adjusted mortality for HMPs was higher (e.g. 33.3%-34.1% higher for the Black population and 13.3%-17.0% for the Hispanic population) compared to the White population. The burden on HMPs decreased only when uptake was increased to 100% in HMPs; however, the Black population still had the highest relative mortality rate even when targeted distribution strategies were employed. If prioritization schemes were not paired with increased uptake in HMPs, disparities did not improve. The vaccination strategies publicly outlined were insufficient, exacerbating disparities between racial and ethnic groups. Strategies targeted to increase vaccine uptake among HMPs are needed to ensure equitable distribution and minimize disparities in outcomes.

Keywords: COVID-19; agent base simulation; health disparities; vaccine equity.