Spin-Orbit Couplings of Open-Shell Systems with Restricted Active Space Configuration Interaction

J Phys Chem A. 2023 Feb 9;127(5):1206-1218. doi: 10.1021/acs.jpca.2c08056. Epub 2023 Jan 31.

Abstract

In this work we perform electronic structure calculations to unravel the origin of spin-orbit couplings (SOCs) in open-shell molecules. For that, we select systems displaying di or polyradical character, e.g., trimethylene, and analyze the changes in the magnitude of SOC constants along molecular distortions of ethylene and in the presence of intermolecular interactions between open and closed-shell moieties in the O2-C2H4 system. Calculations were performed by using nonrelativistic wave functions obtained with the restricted active space configuration interaction (RASCI) method, in conjunction with a recent implementation for the calculation of SOC based on the spin-orbit mean field approximation. Our results demonstrate the suitability of RASCI in the calculation of SOCs of open-shell systems, while providing a deep understanding of the relationship between couplings and the nature of the electronic states. Moreover, we introduce a new definition of the SOC constant for the study of molecular aggregates.