Enhancing pollutant removal from contaminated soils using yield stress fluids as selective blocking agents

J Contam Hydrol. 2023 Apr:255:104142. doi: 10.1016/j.jconhyd.2023.104142. Epub 2023 Feb 1.

Abstract

This work presents a novel technique consisting in the use of yield stress fluids as blocking agents in porous media presenting pore-scale heterogeneities. The key feature of this method is that yield stress fluids only flow through the pores having a minimum size that depends on the applied pressure gradient. These fluids remain immobile in more and more pores as the pressure gradient is decreased. Therefore, the dimension of the pores which are invaded by the yield stress fluid can be controlled by adjusting the applied pressure gradient. Moreover, yield stress fluids are highly suitable blocking agents given the extremely high viscosity values that they exhibit in the pores. This allows for the diversion of the flow from greater to smaller pores during subsequent waterflooding stages, thus enhancing pollutant removal from the flow paths of small hydraulic conductance. A series of multiphase flow experiments were conducted in this study using well-characterized cores of artificial A10 sintered silicate. In these experiments, semidilute aqueous solutions of xanthan gum biopolymer were used as yield stress fluids to block the greatest pores. By doing so, considerably more pollutant was recovered by waterflooding. Furthermore, it was shown that an increase in polymer concentration does not always lead to a decrease in the size of the pores invaded by the blocking agent. Indeed, concentrated polymer solutions generate higher pressure gradients throughout the porous medium, which facilitates the invasion of small pores. Nevertheless, depending on the value of the yield stress-pressure gradient ratio, they may also develop extremely high viscosities that slow down their flow through such small pores. This work also presents a method to measure the volume of blocked pores using the results of tracer tests. The reported results suggest that using a polymer solution developing a yield stress as a selective blocking agent is a promising technique for soil remediation.

Keywords: Experimental method; Multiphase flow; Porous media; Soil remediation; Yield stress fluids.

MeSH terms

  • Environmental Pollutants*
  • Environmental Pollution
  • Polymers
  • Porosity
  • Soil

Substances

  • Environmental Pollutants
  • Polymers
  • Soil