Experimentally Induced Anti-Myeloperoxidase Vasculitis Is Not Attenuated in Factor B or VISTA Deficient Mice

Glomerular Dis. 2021 Nov 30;2(2):83-88. doi: 10.1159/000521233. eCollection 2022 Apr.

Abstract

Background: Anti-neutrophil cytoplasmic antibody vasculitis is characterized by antibodies to myeloperoxidase or proteinase 3. Previous work in murine anti-myeloperoxidase vasculitis has shown a role for the alternative pathway complement component factor B and the anaphylatoxin C5a. However, mice deficient in properdin, which stabilizes the alternative pathway convertase, were not protected. V-Type immunoglobulin domain-containing suppressor of T-cell activation (VISTA)-deficient mice were protected in the nephrotoxic nephritis model but the role of VISTA in anti-myeloperoxidase vasculitis is unknown.

Objectives: This study had 2 aims. First, we attempted to reproduce previous findings on the role of factor B in anti-myeloperoxidase vasculitis. Second, we examined the role of VISTA in this model, in order to see if the protection in the nephrotoxic nephritis model extended to anti-myeloperoxidase vasculitis.

Methods: Anti-myeloperoxidase vasculitis was induced in wild type, factor B, or VISTA deficient mice. Disease was assessed by quantifying glomerular crescents and macrophages, in addition to albuminuria and serum creatinine.

Results: When wild type and factor B deficient mice were compared, there were no differences in any of the histological or biochemical parameters of disease assessed. Similarly, when wild type or VISTA deficient mice were compared, there were no differences.

Conclusions: Factor B deficient mice were not protected which is in contrast to previous studies. Therefore alternative pathway activation is not essential in this model, under the conditions used in this study. VISTA deficient mice were not protected, suggesting that therapies targeting VISTA may not be effective in vasculitis.

Keywords: Complement; Glomerulonephritis; Inflammation; V-type immunoglobulin domain-containing suppressor of T-cell activation; Vasculitis.

Grants and funding

This work was supported by the Medical Research Council (MR/R004870/1), Genzyme Renal Innovations Program, and the Sir Jules Thorn Charitable Trust. We acknowledge financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre (BRC) award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust.