Novel approach to studying effects of inhalational exposure on lung function in civilians exposed to the World Trade Center disaster

Sci Rep. 2023 Feb 24;13(1):3218. doi: 10.1038/s41598-023-30030-2.

Abstract

It is increasingly important to study the impact of environmental inhalation exposures on human health in natural or man-made disasters in civilian populations. The members of the World Trade Center Environmental Health Center (WTC EHC; WTC Survivors) had complex exposures to environmental disaster from the destruction of WTC towers and can serve to reveal the effects of WTC exposure on the entire spectrum of lung functions. We aimed to investigate the associations between complex WTC exposures and measures of spirometry and oscillometry in WTC Survivors and included 3605 patients enrolled between Oct 1, 2009 and Mar 31, 2018. We performed latent class analysis and identified five latent exposure groups. We applied linear and quantile regressions to estimate the exposure effects on the means and various quantiles of pre-bronchodilator (BD) % predicted forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC ratio, as well as the resistance at an oscillating frequency of 5 Hz (R5), frequency dependence of resistance R5-20, and reactance area (AX). Compared with Group 5, which had low or unknown exposure and was treated as the reference group, Group 1, the local workers with both acute and chronic exposures, had a lower median of % predicted FVC (-3.6; 95% CI: -5.4, -1.7) and higher (more abnormal) measures of AX at 10th quantile (0.77 cmH2O L-1 s; 95% CI: 0.41, 1.13) and 25th quantile (0.80 cmH2O L-1 s; 95% CI: 0.41, 1.20). Results suggested heterogeneous exposures to the WTC disaster had differential effects on the distributions of lung functions in the WTC Survivors. These findings could provide insights for future investigation of environmental disaster exposures.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Disasters*
  • Forced Expiratory Volume
  • Humans
  • Inhalation Exposure
  • Lung
  • September 11 Terrorist Attacks*