The timing and amplitude of the muscular activity of the arms preceding impact in a forward fall is modulated with fall velocity

J Biomech. 2023 Mar:150:111515. doi: 10.1016/j.jbiomech.2023.111515. Epub 2023 Feb 24.

Abstract

Protective arm reactions have been shown to be an important injury avoidance mechanism in unavoidable falls. Protective arm reactions have been shown to be modulated with fall height, however it is not clear if they are modulated with impact velocity. The aim of this study was to determine if protective arm reactions are modulated in response to a forward fall with an initially unpredictable impact velocity. Forward falls were evoked via sudden release of a standing pendulum support frame with adjustable counterweight to control fall acceleration and impact velocity. Thirteen younger adults (1 female) participated in this study. Counterweight load explained more than 89% of the variation of impact velocity. Angular velocity at impact decreased (p < 0.001), drop duration increased from 601 ms to 816 ms (p < 0.001), and the maximum vertical ground reaction force decreased from 64%BW to 46%BW (p < 0.001) between the small and large counterweight. Elbow angle at impact (129 degrees extension), triceps (119 ms) and biceps (98 ms) pre-impact time, and co-activation (57%) were not significantly affected by counterweight load (p-values > 0.08). Average triceps and biceps EMG amplitude decreased from 0.26 V/V to 0.19 V/V (p = 0.004) and 0.24 V/V to 0.11 V/V (p = 0.002) with increasing counterweight respectively. Protective arm reactions were modulated with fall velocity by reducing EMG amplitude with decreasing impact velocity. This demonstrates a neuromotor control strategy for managing evolving fall conditions. Future work is needed to further understand how the CNS deals with additional unpredictability (e.g., fall direction, perturbation magnitude, etc.) when deploying protective arm reactions.

Keywords: Control; Falls; Injury; Upper extremity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Elbow Joint* / physiology
  • Female
  • Forelimb
  • Movement / physiology
  • Muscle, Skeletal* / physiology