Meta-analyzing partial correlation coefficients using Fisher's z transformation

Res Synth Methods. 2023 Sep;14(5):768-773. doi: 10.1002/jrsm.1654. Epub 2023 Jul 8.

Abstract

The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated. First, the sampling variance of the PCC cannot assumed to be known, because the sampling variance is a function of the PCC. Second, the sampling distribution of each primary study's PCC is not normal since PCCs are bounded between -1 and 1. I advocate applying the Fisher's z transformation analogous to applying Fisher's z transformation for Pearson correlation coefficients, because the Fisher's z transformed PCC is independent of the sampling variance and its sampling distribution more closely follows a normal distribution. Reproducing a simulation study by Stanley and Doucouliagos and adding meta-analyses based on Fisher's z transformed PCCs shows that the meta-analysis based on Fisher's z transformed PCCs had lower bias and root mean square error than meta-analyzing PCCs. Hence, meta-analyzing Fisher's z transformed PCCs is a viable alternative to meta-analyzing PCCs, and I recommend to accompany any meta-analysis based on PCCs with one using Fisher's z transformed PCCs to assess the robustness of the results.

Keywords: Fisher's z transformation; meta-analysis; partial correlation coefficient; sampling variance.

MeSH terms

  • Computer Simulation*
  • Meta-Analysis as Topic*