Elucidation of the mechanism of amyloid A and transthyretin formation using mass spectrometry-based absolute quantification

Virchows Arch. 2023 Jul 15. doi: 10.1007/s00428-023-03591-w. Online ahead of print.

Abstract

Amyloidosis is triggered by the truncation of amyloid precursor proteins, causing organ damages. While previous studies found the truncation of amyloid A (AA) and amyloid transthyretin (ATTR) occurs in C- and N-terminal, respectively, the detailed mechanism of the fibril formation remains unclear. Liquid chromatography mass spectrometry is usually applied for a qualitative purpose, and thus quantification of tryptic peptide residue is difficult. We therefore employed a mass spectrometry-based quantification by isotope-labeled cell-free (MS-QBIC) to analyze the truncation processes in amyloid fibrillogenesis of AA and ATTR using the formalin-fixed paraffin-embedded tissues of autopsy cases. In this study, the process of transthyretin from an 'early fibril state' consisting of full-length ATTR to a 'mature ATTR amyloid fibril' with a truncated low-amyloidogenic segment has been mathematically revealed. The amount of full-length ATTR was nine times higher than in mature fibers. Large cohort studies using MS-QBIC may shed light on the clinical significance of amyloid fibrils.

Keywords: Amyloidosis; Autopsy; Heart; Proteomics.