Mapping access to meaning in adolescents with autism: Atypical lateralization and spatiotemporal patterns as a function of language ability

Neuroimage Clin. 2023:39:103467. doi: 10.1016/j.nicl.2023.103467. Epub 2023 Jul 6.

Abstract

Individuals with autism spectrum disorders (ASD) vary in their language abilities, associated with atypical patterns of brain activity. However, few studies have examined the spatiotemporal profiles of lexico-semantic processing in ASD, particularly as a function of language heterogeneity. Thirty-nine high-functioning adolescents with ASD and 21 typically developing (TD) peers took part in a lexical decision task that combined semantic access with demands on cognitive control. Spatiotemporal characteristics of the processing stages were examined with a multimodal anatomically-constrained magnetoencephalography (aMEG) approach, which integrates MEG with structural MRI. Additional EEG data were acquired from a limited montage simultaneously with MEG. TD adolescents showed the canonical left-dominant activity in frontotemporal regions during both early (N250m) and late (N400m) stages of lexical access and semantic integration. In contrast, the ASD participants showed bilateral engagement of the frontotemporal language network, indicative of compensatory recruitment of the right hemisphere. The left temporal N400m was prominent in both groups, confirming preserved attempts to access meaning. In contrast, the left prefrontal N400m was reduced in ASD participants, consistent with impaired semantic/contextual integration and inhibitory control. To further investigate the impact of language proficiency, the ASD sample was stratified into high- and low-performing (H-ASD and L-ASD) subgroups based on their task accuracy. The H-ASD subgroup performed on par with the TD group and showed greater activity in the right prefrontal and bilateral temporal cortices relative to the L-ASD subgroup, suggesting compensatory engagement. The L-ASD subgroup additionally showed reduced and delayed left prefrontal N400m, consistent with more profound semantic and executive impairments in this subgroup. These distinct spatiotemporal activity profiles reveal the neural underpinnings of the ASD-specific access to meaning and provide insight into the phenotypic heterogeneity of language in ASD, which may be a result of different neurodevelopmental trajectories and adoption of compensatory strategies.

Keywords: Autism; Language; MEG; N400; Phenotypic heterogeneity; Semantic/contextual integration.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Autism Spectrum Disorder* / diagnostic imaging
  • Autistic Disorder*
  • Brain / diagnostic imaging
  • Brain Mapping
  • Cognition
  • Humans
  • Language
  • Magnetic Resonance Imaging