Assessing the Safety of MA-[D-Leu-4]-OB3, a Synthetic Peptide Leptin Mimetic: Two Pre-Clinical Toxicity Studies in Male and Female C57BL/6 Mice

Int J Toxicol. 2023 Dec;42(6):504-514. doi: 10.1177/10915818231193634. Epub 2023 Aug 9.

Abstract

Although the regulatory influence of leptin on energy balance, glycemic control, immunity, reproduction, and cognition is well established, its clinical application to common obesity and its co-morbidities has been limited by impaired transport across the blood-brain barrier, and tendencies to induce adverse side effects. To circumvent these drawbacks, MA-[D-Leu-4]-OB3, a leptin-related synthetic peptide that mimics the metabolic and neurotrophic effects of leptin in mouse models of genetic and non-genetic obesity, diabetes, and cognitive dysfunction, has been developed. This report presents the results of our initial efforts to assess the safety of orally delivered MA-[D-Leu-4]-OB3. Two pre-clinical studies were done in male and female C57BL/6 mice: a short-term study with a high dose of MA-[D-Leu-4]-OB3 (50 mg/kg/100 μL/day) and a dose-response study with 3 increasing concentrations of MA-[D-Leu-4]-OB3 (16.6, 50, and 150 mg/kg/100 μL/day). Body weight, food and water intake, glucose tolerance, and episodic memory were evaluated. Once-daily cage-side clinical observations were conducted to detect any physical or behavioral indicators of toxicity. Our results indicate that all metabolic and neurologic endpoints tested were either unaffected or improved by MA-[D-Leu-4]-OB3, and no clinical indicators of toxicity were evident. Together with our previously reported efficacy data, these results provide additional evidence supporting further development of this novel synthetic peptide leptin mimetic as a first-in-class peptide drug candidate for the treatment of a number of metabolic and/or cognitive dysfunctions in humans.

Keywords: cognitive dysfunction; diabetes; leptin mimetic; metabolic syndrome; obesity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Humans
  • Leptin* / toxicity
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Obesity / drug therapy
  • Peptide Fragments* / toxicity
  • Peptides / toxicity

Substances

  • Leptin
  • Peptide Fragments
  • Peptides