Identification of DNA variants at ultra-low variant allele frequencies via Taq polymerase cleavage of wild-specific blockers

Anal Bioanal Chem. 2023 Nov;415(26):6537-6549. doi: 10.1007/s00216-023-04931-0. Epub 2023 Sep 13.

Abstract

Detecting mutations related to tumors holds immense clinical significance for cancer diagnosis and treatment. However, the presence of highly redundant wild DNA poses a challenge for the advancement of low-copy mutant ctDNA genotyping in cancer cases. To address this, a Taqman qPCR strategy to identify rare mutations at low variant allele fractions (VAFs) has been developed. This strategy combines mutant-specific primers with wild-specific blockers. Diverging from other blocker-mediated PCRs, which rely on primer-induced strand displacement or the use of modified oligos resistant to Taq polymerase, our innovation is built upon the cleavage of specific blockers by Taq polymerase. Given its unique design, which does not hinge on strand displacement or base modification, we refer to this novel method as unmodified-blocker cleavage PCR (UBC-PCR). Multiple experiments consistently confirmed that variant distinction was improved significantly by introduction of 5' unmatched blockers into the reaction. Moreover, UBC-PCR successfully detected mutant DNA at VAFs as low as 0.01% across six different variant contexts. Multiplex UBC-PCR was also performed to identify a reference target and three mutations with a sensitivity of 0.01% VAFs in one single tube. In profiling the gene status from 12 lung cancer ctDNA samples and 22 thyroid cancer FNA DNA samples, UBC-PCR exhibited a 100% concordance rate with ddPCR and a commercial ARMS kit, respectively. Our work demonstrates that UBC-PCR can identify low-abundance variants with high sensitivity in multiplex reactions, independent of strand displacement and base modification. This strategy holds the potential to significantly impact clinical practice and precision medicine.

Keywords: Blocker; Exonuclease activity; Rare variants; Taq polymerase; ctDNA.